Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.

Identifieur interne : 003216 ( Main/Exploration ); précédent : 003215; suivant : 003217

Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.

Auteurs : Brian Young [États-Unis] ; Diane Wagner ; Patricia Doak ; Thomas Clausen

Source :

RBID : pubmed:20354896

Descripteurs français

English descriptors

Abstract

We studied the effect of epidermal leaf mining on the leaf chemistry of quaking aspen, Populus tremuloides, during an outbreak of the aspen leaf miner, Phyllocnistis populiella, in the boreal forest of interior Alaska. Phyllocnistis populiella feeds on the epidermal cells of P. tremuloides leaves. Eleven days after the onset of leaf mining, concentrations of the phenolic glycosides tremulacin and salicortin were significantly higher in aspen leaves that had received natural levels of leaf mining than in leaves sprayed with insecticide to reduce mining damage. In a second experiment, we examined the time course of induction in more detail. The levels of foliar phenolic glycosides in naturally mined ramets increased relative to the levels in insecticide-treated ramets on the ninth day following the onset of leaf mining. Induction occurred while some leaf miner larvae were still feeding and when leaves had sustained mining over 5% of the leaf surface. Leaves with extrafloral nectaries (EFNs) had significantly higher constitutive and induced levels of phenolic glycosides than leaves lacking EFNs, but there was no difference in the ability of leaves with and without EFNs to induce phenolic glycosides in response to mining. Previous work showed that the extent of leaf mining damage was negatively related to the total foliar phenolic glycoside concentration, suggesting that phenolic glycosides deter or reduce mining damage. The results presented here demonstrate that induction of phenolic glycosides can be triggered by relatively small amounts of mining damage confined to the epidermal tissue, and that these changes in leaf chemistry occur while a subset of leaf miners are still feeding within the leaf.

DOI: 10.1007/s10886-010-9763-9
PubMed: 20354896


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.</title>
<author>
<name sortKey="Young, Brian" sort="Young, Brian" uniqKey="Young B" first="Brian" last="Young">Brian Young</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. bdyoung@alaska.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000</wicri:regionArea>
<placeName>
<region type="state">Alaska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</author>
<author>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
</author>
<author>
<name sortKey="Clausen, Thomas" sort="Clausen, Thomas" uniqKey="Clausen T" first="Thomas" last="Clausen">Thomas Clausen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20354896</idno>
<idno type="pmid">20354896</idno>
<idno type="doi">10.1007/s10886-010-9763-9</idno>
<idno type="wicri:Area/Main/Corpus">003245</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003245</idno>
<idno type="wicri:Area/Main/Curation">003245</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003245</idno>
<idno type="wicri:Area/Main/Exploration">003245</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.</title>
<author>
<name sortKey="Young, Brian" sort="Young, Brian" uniqKey="Young B" first="Brian" last="Young">Brian Young</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. bdyoung@alaska.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000</wicri:regionArea>
<placeName>
<region type="state">Alaska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</author>
<author>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
</author>
<author>
<name sortKey="Clausen, Thomas" sort="Clausen, Thomas" uniqKey="Clausen T" first="Thomas" last="Clausen">Thomas Clausen</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glucosides (metabolism)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Moths (physiology)</term>
<term>Plant Epidermis (parasitology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (parasitology)</term>
<term>Plant Nectar (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Populus (parasitology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (parasitologie)</term>
<term>Glucosides (métabolisme)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Nectar des plantes (MeSH)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (métabolisme)</term>
<term>Populus (parasitologie)</term>
<term>Épiderme végétal (parasitologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Glucosides</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Epidermis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Host-Parasite Interactions</term>
<term>Plant Nectar</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Interactions hôte-parasite</term>
<term>Nectar des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We studied the effect of epidermal leaf mining on the leaf chemistry of quaking aspen, Populus tremuloides, during an outbreak of the aspen leaf miner, Phyllocnistis populiella, in the boreal forest of interior Alaska. Phyllocnistis populiella feeds on the epidermal cells of P. tremuloides leaves. Eleven days after the onset of leaf mining, concentrations of the phenolic glycosides tremulacin and salicortin were significantly higher in aspen leaves that had received natural levels of leaf mining than in leaves sprayed with insecticide to reduce mining damage. In a second experiment, we examined the time course of induction in more detail. The levels of foliar phenolic glycosides in naturally mined ramets increased relative to the levels in insecticide-treated ramets on the ninth day following the onset of leaf mining. Induction occurred while some leaf miner larvae were still feeding and when leaves had sustained mining over 5% of the leaf surface. Leaves with extrafloral nectaries (EFNs) had significantly higher constitutive and induced levels of phenolic glycosides than leaves lacking EFNs, but there was no difference in the ability of leaves with and without EFNs to induce phenolic glycosides in response to mining. Previous work showed that the extent of leaf mining damage was negatively related to the total foliar phenolic glycoside concentration, suggesting that phenolic glycosides deter or reduce mining damage. The results presented here demonstrate that induction of phenolic glycosides can be triggered by relatively small amounts of mining damage confined to the epidermal tissue, and that these changes in leaf chemistry occur while a subset of leaf miners are still feeding within the leaf.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20354896</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>36</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.</ArticleTitle>
<Pagination>
<MedlinePgn>369-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-010-9763-9</ELocationID>
<Abstract>
<AbstractText>We studied the effect of epidermal leaf mining on the leaf chemistry of quaking aspen, Populus tremuloides, during an outbreak of the aspen leaf miner, Phyllocnistis populiella, in the boreal forest of interior Alaska. Phyllocnistis populiella feeds on the epidermal cells of P. tremuloides leaves. Eleven days after the onset of leaf mining, concentrations of the phenolic glycosides tremulacin and salicortin were significantly higher in aspen leaves that had received natural levels of leaf mining than in leaves sprayed with insecticide to reduce mining damage. In a second experiment, we examined the time course of induction in more detail. The levels of foliar phenolic glycosides in naturally mined ramets increased relative to the levels in insecticide-treated ramets on the ninth day following the onset of leaf mining. Induction occurred while some leaf miner larvae were still feeding and when leaves had sustained mining over 5% of the leaf surface. Leaves with extrafloral nectaries (EFNs) had significantly higher constitutive and induced levels of phenolic glycosides than leaves lacking EFNs, but there was no difference in the ability of leaves with and without EFNs to induce phenolic glycosides in response to mining. Previous work showed that the extent of leaf mining damage was negatively related to the total foliar phenolic glycoside concentration, suggesting that phenolic glycosides deter or reduce mining damage. The results presented here demonstrate that induction of phenolic glycosides can be triggered by relatively small amounts of mining damage confined to the epidermal tissue, and that these changes in leaf chemistry occur while a subset of leaf miners are still feeding within the leaf.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Arctic Biology, Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. bdyoung@alaska.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Diane</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doak</LastName>
<ForeName>Patricia</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clausen</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057048">Plant Nectar</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>29836-40-6</RegistryNumber>
<NameOfSubstance UI="C095421">tremulacin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YI29948E0Q</RegistryNumber>
<NameOfSubstance UI="C113068">salicortin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019441" MajorTopicYN="N">Plant Epidermis</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057048" MajorTopicYN="N">Plant Nectar</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20354896</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-010-9763-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2004 Jun;91(6):871-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Aug;53(4):1093-1104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 8;430(6996):205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Sep;32(9):1977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16906360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Nov;29(11):2585-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14682535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Aug;157(2):259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18523809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Sep;15(9):2335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Oct;20(10):2575-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Apr;97(4):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Nov;74(1):144-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1997 Sep;53(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9333350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Oct;73(4):513-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Aug;107(3):379-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Alaska</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Clausen, Thomas" sort="Clausen, Thomas" uniqKey="Clausen T" first="Thomas" last="Clausen">Thomas Clausen</name>
<name sortKey="Doak, Patricia" sort="Doak, Patricia" uniqKey="Doak P" first="Patricia" last="Doak">Patricia Doak</name>
<name sortKey="Wagner, Diane" sort="Wagner, Diane" uniqKey="Wagner D" first="Diane" last="Wagner">Diane Wagner</name>
</noCountry>
<country name="États-Unis">
<region name="Alaska">
<name sortKey="Young, Brian" sort="Young, Brian" uniqKey="Young B" first="Brian" last="Young">Brian Young</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20354896
   |texte=   Induction of phenolic glycosides by quaking aspen (Populus tremuloides) leaves in relation to extrafloral nectaries and epidermal leaf mining.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20354896" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020